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Infrared properties of the Yang-Mills field remain rather obscure.

Perturbative scattering matrix does not exist in the Yang-Mills theory,
and the only sensible objects are the correlation functions of the gauge
invariant operators, or gauge invariant infrared regularized theory.
Simple infrared regularization by introducing a mass for the vector
field, breaks the gauge invariance of the theory and the limit m → 0

does not exist. Restoring gauge invariance by means of Stuekelberg
formalism we loose renormalizability, and the limit m → 0 does not
coincide with the massless model.On the other hand in the Higgs
model the limit m → 0 does exist, but produces a different theory,
describing not only the massless vector field but also a scalar particle.

In fact even the quantization of nonabelian gauge fields beyond perturbation
theory is an unsolved problem (Gribov ambuguity).



It was discussed in the papers (A.A.Slavnov, Theoretical and Mathematical
Physics 154(2008)213, A.A.Slavnov, JHEP 08(2008)047, A.Quadri,
A.A.Slavnov JHEP 07(2010)087.) that impossibility to select a unique
Lorentz invariant gauge beyond the perturbation theory is not the
intrinsic property of the Yang-Mills model, but is related to its particular
formulation. Adding new excitations which decouple asymptotically
it is possible to quantize nonabelian gauge models in a manifestly
Lorentz invariant way both in perturbation theory and beyond it. The
infrared regularization based on this formulation was also proposed
(A.A.Slavnov, Theoretical and Mathematical Physics 175(2013) 447.
In this talk I am going to discuss the simpler method of gauge invariant
infrared regularization, applicable both in perturbation theory and
beyond it.



Having that in mind we propose to use for the gauge invariant infrared
regularization of the Yang-Mills theory the following Lagrangian
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, where m is a constant, having the dimension of mass. The scalar
fields (ϕ, χ are commuting, e, b are anticommuting) are parametrized
by the Hermitean components
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This Lagrangian may be obtained from the gauge invariant Lagrangian,
describing the interaction of the complex scalar doublets with the
Yang-Mills field by the shift

ϕ→ ϕ− g−1m̂; χ→ χ+ αg−1m̂ (4)

Hence the Lagrangian (1) is invariant with respect
to the "shifted"gauge transformations.
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This Lagrangian at α = 1, which corresponds to removing infrared
regularization, is also invariant with respect to the supersymmetry
transformations

δϕ−α(x) = 2iεbα(x)

δeα(x) = εϕ+
α (x)

δb(x) = 0 (5)

where ε is a constant anticommuting parameter.

This invariance plays a crucial role in the proof of the equivalence of
the model described by the Lagrangian (1) to the standard Yang-Mills
theory.It provides the unitarity of the scattering matrix in the subspace
which includes only three dimensionally transversal components of the
Yang-Mils field.



The field φa− is shifted by the gauge transformation by an arbitrary
function, therefore one can put φa− = 0. This gauge is algebraic, but
Lorentz invariant. It may be used beyond perturbation theory as well.
In the case under consideration the massive theory with α 6= 1 is
gauge invariant but not unitary. It may seem strange as usually the
gauge invariance is a sufficient condition of unitarity, because one can
pass freely from a renormalizable gauge to the unitary one, where the
spectrum includes only physical excitations. In the present case there
is no "unitary"gauge. Even in the gauge φa− = 0, there are unphysical
excitations.



A canonical quantization in the gauge ϕa− = 0 requires introduction
of ultralocal ghosts. So the gauge fixing is introduced by adding to
the action the term

s
∫
d4xc̄aϕa− =

∫
d4x(λaϕa− − c̄aMabcb) (6)
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Imposing the gauge condition ϕa− = 0 we break the invariance
of the effective action with respect to the supersymmetry
transformation (5).

However, as the transition from one gauge to the other one may be
achieved by a gauge transformation, and in the gauge ∂iAi = 0 the
effective action is invariant with respect to the supertransformation
(5), in the gauge ϕa− = 0 it also must be invariant with respect to some
supertransformation.The corresponding gauge function is a solution
of the equation∫

d4xλa(x)∂i(A
Ω)ai (x) =

∫
d4xλa(x)ϕa−(x) (8)



To analyze possible asymptotic states it is sufficient to find a solution
of eq. (8)at g = 0. It is

ηa(x) =
∂iAi(x)− ϕa−(x)

m
(9)

ηa(x) are the parameters of the gauge group.

The functions ηa(x) change under the supersymmetry transformations:

ηa(x)→ ηa(x)− i
√

2εba(x)

m
(10)

Therefore

Ãaµ(x)→ Ãaµ(x) + i

√
2εba(x)

m
(11)



The invariance with respect to the supertransformation(5) and the
BRST transformations corresponding to the gauge invariant classical
action in the gauge ϕa− = 0 allows to find the transformation which
leaves invariant the free effective action in the gauge ϕa− = 0:



For asymptotic theory the symmetry transformations are

δAaµ = ∂µb
aµ−1ε

δφa = 0

δφ0 = −b0ε
δea = ∂µA

a
µµ
−1

δe0 = −∂2φ0µ−2

δba = 0

δb0 = 0. (12)



This invariance generates a conserved charge Q and the asymptotic
states may be chosen to satisfy the condition

Q̂0|ψ >as= 0 (13)

We want to prove that the Lagrangian(1+6) really describes the
infrared regularization of the Yang-Mills theory. That means for α 6= 1

it corresponds to a massive gauge invariant theory and in the limit
α = 1 it describes the usual three dimensionally transversal excitations
of the Yang-Mills field.



These symmetries are sufficient to prove the renormalizability of the
theory and the unitarity of the corresponding scattering matrix for α =

1 in the subspace, which contains only three dimensionally transversal
components of the Yang-Mills field. Scattering matrix for α 6= 1 acts
in large space containing the excitations with the negative energy and
is not unitary in the physical subspace.



The spectrum:
Ghost excitations: ϕ±, b, e, longitudinal and temporal components of
Aaµ
Physical excitations: three dimensionally transversal components of
the Yang-Mills field.

The supersymmetry of the effective action generates a conserved
nilpotent charge Q. Physical states are separated by the condition

Q|ψ >ph= 0 (14)

the states separated by this condition describe only three dimensionally
transversal components of the Yang-Mills field.

The ghost excitations decouple.



Therefore for α 6= 1 we have a gauge invariant theory , which describes
massive Yang-Mills quanta, but is not unitary in the physical subspace.
For α = 1 we have usual massless Yang-Mills theory. So we succeeded
in construction of the gauge invariant and renormalizable infrared
regularization of the Yang-Mills theory. Obviously this regularization
may be used both in perturbation theory and beyond it.


